metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.87D10, C10.462- (1+4), C4⋊C4.308D10, (C4×Dic10)⋊5C2, (C2×Dic10)⋊29C4, (C4×C20).20C22, (C2×C10).60C24, C10.36(C23×C4), Dic5⋊3Q8⋊11C2, (C2×C20).581C23, C20.178(C22×C4), C22⋊C4.123D10, Dic10.46(C2×C4), C42⋊C2.10D5, (C22×C4).185D10, C22.25(C23×D5), C4⋊Dic5.396C22, (C4×Dic5).75C22, Dic5.14(C22×C4), C23.149(C22×D5), C23.D5.90C22, C2.1(D4.10D10), (C22×C10).130C23, (C22×C20).221C22, C5⋊2(C23.32C23), (C22×Dic10).18C2, (C2×Dic5).202C23, C23.11D10.5C2, (C2×Dic10).291C22, C10.D4.130C22, C23.21D10.21C2, (C22×Dic5).84C22, C4.57(C2×C4×D5), (C2×C4).57(C4×D5), C22.25(C2×C4×D5), C2.17(D5×C22×C4), (C2×C20).302(C2×C4), (C5×C4⋊C4).301C22, (C2×Dic5).38(C2×C4), (C2×C4).268(C22×D5), (C2×C10).120(C22×C4), (C5×C42⋊C2).11C2, (C5×C22⋊C4).133C22, SmallGroup(320,1188)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 686 in 266 conjugacy classes, 151 normal (19 characteristic)
C1, C2, C2 [×2], C2 [×2], C4 [×4], C4 [×16], C22, C22 [×2], C22 [×2], C5, C2×C4 [×2], C2×C4 [×8], C2×C4 [×16], Q8 [×16], C23, C10, C10 [×2], C10 [×2], C42 [×2], C42 [×10], C22⋊C4 [×2], C22⋊C4 [×2], C4⋊C4 [×2], C4⋊C4 [×10], C22×C4, C22×C4 [×2], C2×Q8 [×12], Dic5 [×8], Dic5 [×4], C20 [×4], C20 [×4], C2×C10, C2×C10 [×2], C2×C10 [×2], C42⋊C2, C42⋊C2 [×5], C4×Q8 [×8], C22×Q8, Dic10 [×16], C2×Dic5 [×16], C2×C20 [×2], C2×C20 [×8], C22×C10, C23.32C23, C4×Dic5 [×10], C10.D4 [×8], C4⋊Dic5 [×2], C23.D5 [×2], C4×C20 [×2], C5×C22⋊C4 [×2], C5×C4⋊C4 [×2], C2×Dic10 [×12], C22×Dic5 [×2], C22×C20, C4×Dic10 [×4], C23.11D10 [×4], Dic5⋊3Q8 [×4], C23.21D10, C5×C42⋊C2, C22×Dic10, C42.87D10
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], D5, C22×C4 [×14], C24, D10 [×7], C23×C4, 2- (1+4) [×2], C4×D5 [×4], C22×D5 [×7], C23.32C23, C2×C4×D5 [×6], C23×D5, D5×C22×C4, D4.10D10 [×2], C42.87D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=a2b, dcd-1=c-1 >
(1 48 8 43)(2 49 9 44)(3 50 10 45)(4 46 6 41)(5 47 7 42)(11 56 16 51)(12 57 17 52)(13 58 18 53)(14 59 19 54)(15 60 20 55)(21 28 72 62)(22 29 73 63)(23 30 74 64)(24 26 75 65)(25 27 71 61)(31 70 39 77)(32 66 40 78)(33 67 36 79)(34 68 37 80)(35 69 38 76)(81 109 86 104)(82 110 87 105)(83 101 88 106)(84 102 89 107)(85 103 90 108)(91 153 96 158)(92 154 97 159)(93 155 98 160)(94 156 99 151)(95 157 100 152)(111 125 116 130)(112 126 117 121)(113 127 118 122)(114 128 119 123)(115 129 120 124)(131 142 136 147)(132 143 137 148)(133 144 138 149)(134 145 139 150)(135 146 140 141)
(1 89 13 151)(2 85 14 157)(3 81 15 153)(4 87 11 159)(5 83 12 155)(6 82 16 154)(7 88 17 160)(8 84 18 156)(9 90 19 152)(10 86 20 158)(21 118 79 148)(22 114 80 144)(23 120 76 150)(24 116 77 146)(25 112 78 142)(26 130 31 140)(27 126 32 136)(28 122 33 132)(29 128 34 138)(30 124 35 134)(36 137 62 127)(37 133 63 123)(38 139 64 129)(39 135 65 125)(40 131 61 121)(41 110 51 97)(42 106 52 93)(43 102 53 99)(44 108 54 95)(45 104 55 91)(46 105 56 92)(47 101 57 98)(48 107 58 94)(49 103 59 100)(50 109 60 96)(66 147 71 117)(67 143 72 113)(68 149 73 119)(69 145 74 115)(70 141 75 111)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 39 8 31)(2 38 9 35)(3 37 10 34)(4 36 6 33)(5 40 7 32)(11 62 16 28)(12 61 17 27)(13 65 18 26)(14 64 19 30)(15 63 20 29)(21 56 72 51)(22 60 73 55)(23 59 74 54)(24 58 75 53)(25 57 71 52)(41 79 46 67)(42 78 47 66)(43 77 48 70)(44 76 49 69)(45 80 50 68)(81 138 86 133)(82 137 87 132)(83 136 88 131)(84 135 89 140)(85 134 90 139)(91 119 96 114)(92 118 97 113)(93 117 98 112)(94 116 99 111)(95 115 100 120)(101 142 106 147)(102 141 107 146)(103 150 108 145)(104 149 109 144)(105 148 110 143)(121 155 126 160)(122 154 127 159)(123 153 128 158)(124 152 129 157)(125 151 130 156)
G:=sub<Sym(160)| (1,48,8,43)(2,49,9,44)(3,50,10,45)(4,46,6,41)(5,47,7,42)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,28,72,62)(22,29,73,63)(23,30,74,64)(24,26,75,65)(25,27,71,61)(31,70,39,77)(32,66,40,78)(33,67,36,79)(34,68,37,80)(35,69,38,76)(81,109,86,104)(82,110,87,105)(83,101,88,106)(84,102,89,107)(85,103,90,108)(91,153,96,158)(92,154,97,159)(93,155,98,160)(94,156,99,151)(95,157,100,152)(111,125,116,130)(112,126,117,121)(113,127,118,122)(114,128,119,123)(115,129,120,124)(131,142,136,147)(132,143,137,148)(133,144,138,149)(134,145,139,150)(135,146,140,141), (1,89,13,151)(2,85,14,157)(3,81,15,153)(4,87,11,159)(5,83,12,155)(6,82,16,154)(7,88,17,160)(8,84,18,156)(9,90,19,152)(10,86,20,158)(21,118,79,148)(22,114,80,144)(23,120,76,150)(24,116,77,146)(25,112,78,142)(26,130,31,140)(27,126,32,136)(28,122,33,132)(29,128,34,138)(30,124,35,134)(36,137,62,127)(37,133,63,123)(38,139,64,129)(39,135,65,125)(40,131,61,121)(41,110,51,97)(42,106,52,93)(43,102,53,99)(44,108,54,95)(45,104,55,91)(46,105,56,92)(47,101,57,98)(48,107,58,94)(49,103,59,100)(50,109,60,96)(66,147,71,117)(67,143,72,113)(68,149,73,119)(69,145,74,115)(70,141,75,111), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,39,8,31)(2,38,9,35)(3,37,10,34)(4,36,6,33)(5,40,7,32)(11,62,16,28)(12,61,17,27)(13,65,18,26)(14,64,19,30)(15,63,20,29)(21,56,72,51)(22,60,73,55)(23,59,74,54)(24,58,75,53)(25,57,71,52)(41,79,46,67)(42,78,47,66)(43,77,48,70)(44,76,49,69)(45,80,50,68)(81,138,86,133)(82,137,87,132)(83,136,88,131)(84,135,89,140)(85,134,90,139)(91,119,96,114)(92,118,97,113)(93,117,98,112)(94,116,99,111)(95,115,100,120)(101,142,106,147)(102,141,107,146)(103,150,108,145)(104,149,109,144)(105,148,110,143)(121,155,126,160)(122,154,127,159)(123,153,128,158)(124,152,129,157)(125,151,130,156)>;
G:=Group( (1,48,8,43)(2,49,9,44)(3,50,10,45)(4,46,6,41)(5,47,7,42)(11,56,16,51)(12,57,17,52)(13,58,18,53)(14,59,19,54)(15,60,20,55)(21,28,72,62)(22,29,73,63)(23,30,74,64)(24,26,75,65)(25,27,71,61)(31,70,39,77)(32,66,40,78)(33,67,36,79)(34,68,37,80)(35,69,38,76)(81,109,86,104)(82,110,87,105)(83,101,88,106)(84,102,89,107)(85,103,90,108)(91,153,96,158)(92,154,97,159)(93,155,98,160)(94,156,99,151)(95,157,100,152)(111,125,116,130)(112,126,117,121)(113,127,118,122)(114,128,119,123)(115,129,120,124)(131,142,136,147)(132,143,137,148)(133,144,138,149)(134,145,139,150)(135,146,140,141), (1,89,13,151)(2,85,14,157)(3,81,15,153)(4,87,11,159)(5,83,12,155)(6,82,16,154)(7,88,17,160)(8,84,18,156)(9,90,19,152)(10,86,20,158)(21,118,79,148)(22,114,80,144)(23,120,76,150)(24,116,77,146)(25,112,78,142)(26,130,31,140)(27,126,32,136)(28,122,33,132)(29,128,34,138)(30,124,35,134)(36,137,62,127)(37,133,63,123)(38,139,64,129)(39,135,65,125)(40,131,61,121)(41,110,51,97)(42,106,52,93)(43,102,53,99)(44,108,54,95)(45,104,55,91)(46,105,56,92)(47,101,57,98)(48,107,58,94)(49,103,59,100)(50,109,60,96)(66,147,71,117)(67,143,72,113)(68,149,73,119)(69,145,74,115)(70,141,75,111), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,39,8,31)(2,38,9,35)(3,37,10,34)(4,36,6,33)(5,40,7,32)(11,62,16,28)(12,61,17,27)(13,65,18,26)(14,64,19,30)(15,63,20,29)(21,56,72,51)(22,60,73,55)(23,59,74,54)(24,58,75,53)(25,57,71,52)(41,79,46,67)(42,78,47,66)(43,77,48,70)(44,76,49,69)(45,80,50,68)(81,138,86,133)(82,137,87,132)(83,136,88,131)(84,135,89,140)(85,134,90,139)(91,119,96,114)(92,118,97,113)(93,117,98,112)(94,116,99,111)(95,115,100,120)(101,142,106,147)(102,141,107,146)(103,150,108,145)(104,149,109,144)(105,148,110,143)(121,155,126,160)(122,154,127,159)(123,153,128,158)(124,152,129,157)(125,151,130,156) );
G=PermutationGroup([(1,48,8,43),(2,49,9,44),(3,50,10,45),(4,46,6,41),(5,47,7,42),(11,56,16,51),(12,57,17,52),(13,58,18,53),(14,59,19,54),(15,60,20,55),(21,28,72,62),(22,29,73,63),(23,30,74,64),(24,26,75,65),(25,27,71,61),(31,70,39,77),(32,66,40,78),(33,67,36,79),(34,68,37,80),(35,69,38,76),(81,109,86,104),(82,110,87,105),(83,101,88,106),(84,102,89,107),(85,103,90,108),(91,153,96,158),(92,154,97,159),(93,155,98,160),(94,156,99,151),(95,157,100,152),(111,125,116,130),(112,126,117,121),(113,127,118,122),(114,128,119,123),(115,129,120,124),(131,142,136,147),(132,143,137,148),(133,144,138,149),(134,145,139,150),(135,146,140,141)], [(1,89,13,151),(2,85,14,157),(3,81,15,153),(4,87,11,159),(5,83,12,155),(6,82,16,154),(7,88,17,160),(8,84,18,156),(9,90,19,152),(10,86,20,158),(21,118,79,148),(22,114,80,144),(23,120,76,150),(24,116,77,146),(25,112,78,142),(26,130,31,140),(27,126,32,136),(28,122,33,132),(29,128,34,138),(30,124,35,134),(36,137,62,127),(37,133,63,123),(38,139,64,129),(39,135,65,125),(40,131,61,121),(41,110,51,97),(42,106,52,93),(43,102,53,99),(44,108,54,95),(45,104,55,91),(46,105,56,92),(47,101,57,98),(48,107,58,94),(49,103,59,100),(50,109,60,96),(66,147,71,117),(67,143,72,113),(68,149,73,119),(69,145,74,115),(70,141,75,111)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,39,8,31),(2,38,9,35),(3,37,10,34),(4,36,6,33),(5,40,7,32),(11,62,16,28),(12,61,17,27),(13,65,18,26),(14,64,19,30),(15,63,20,29),(21,56,72,51),(22,60,73,55),(23,59,74,54),(24,58,75,53),(25,57,71,52),(41,79,46,67),(42,78,47,66),(43,77,48,70),(44,76,49,69),(45,80,50,68),(81,138,86,133),(82,137,87,132),(83,136,88,131),(84,135,89,140),(85,134,90,139),(91,119,96,114),(92,118,97,113),(93,117,98,112),(94,116,99,111),(95,115,100,120),(101,142,106,147),(102,141,107,146),(103,150,108,145),(104,149,109,144),(105,148,110,143),(121,155,126,160),(122,154,127,159),(123,153,128,158),(124,152,129,157),(125,151,130,156)])
Matrix representation ►G ⊆ GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 32 | 0 | 0 |
0 | 0 | 37 | 39 | 0 | 0 |
0 | 0 | 0 | 0 | 11 | 32 |
0 | 0 | 0 | 0 | 9 | 30 |
9 | 0 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 23 | 23 |
0 | 0 | 0 | 9 | 36 | 38 |
0 | 0 | 0 | 0 | 32 | 0 |
0 | 0 | 0 | 0 | 0 | 32 |
0 | 6 | 0 | 0 | 0 | 0 |
34 | 7 | 0 | 0 | 0 | 0 |
0 | 0 | 6 | 7 | 0 | 0 |
0 | 0 | 35 | 0 | 0 | 0 |
0 | 0 | 19 | 10 | 1 | 34 |
0 | 0 | 28 | 38 | 7 | 34 |
26 | 38 | 0 | 0 | 0 | 0 |
20 | 15 | 0 | 0 | 0 | 0 |
0 | 0 | 13 | 22 | 0 | 0 |
0 | 0 | 37 | 28 | 0 | 0 |
0 | 0 | 6 | 14 | 22 | 19 |
0 | 0 | 7 | 8 | 9 | 19 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,2,37,0,0,0,0,32,39,0,0,0,0,0,0,11,9,0,0,0,0,32,30],[9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,23,36,32,0,0,0,23,38,0,32],[0,34,0,0,0,0,6,7,0,0,0,0,0,0,6,35,19,28,0,0,7,0,10,38,0,0,0,0,1,7,0,0,0,0,34,34],[26,20,0,0,0,0,38,15,0,0,0,0,0,0,13,37,6,7,0,0,22,28,14,8,0,0,0,0,22,9,0,0,0,0,19,19] >;
74 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 4A | ··· | 4L | 4M | ··· | 4AB | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20H | 20I | ··· | 20AB |
order | 1 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | - | - | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D5 | D10 | D10 | D10 | D10 | C4×D5 | 2- (1+4) | D4.10D10 |
kernel | C42.87D10 | C4×Dic10 | C23.11D10 | Dic5⋊3Q8 | C23.21D10 | C5×C42⋊C2 | C22×Dic10 | C2×Dic10 | C42⋊C2 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×C4 | C10 | C2 |
# reps | 1 | 4 | 4 | 4 | 1 | 1 | 1 | 16 | 2 | 4 | 4 | 4 | 2 | 16 | 2 | 8 |
In GAP, Magma, Sage, TeX
C_4^2._{87}D_{10}
% in TeX
G:=Group("C4^2.87D10");
// GroupNames label
G:=SmallGroup(320,1188);
// by ID
G=gap.SmallGroup(320,1188);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,224,758,184,570,80,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=c^-1>;
// generators/relations